Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Geomagnetic disturbances (GMDs) are rapid fluctuations in the strength and direction of the magnetic field near the surface of the Earth which can cause electric currents to be induced in the ground. The geomagnetically induced currents (GICs) can cause damage to pipelines and power grids. A detection algorithm has been developed to identify rapid changes in 10 s averaged magnetometer data. This higher resolution data is important in capturing the most rapid changes associated with extreme GIC events. The algorithm has been used on an array of ground‐based magnetometers from SuperMAG data from 2010 to 2022, creating a new list of global GMDs. Data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) is used to place the observed GMDs in the context of the global pattern of magnetosphere‐ionosphere field‐aligned currents (FACs). A dawn sector population of GMDs is found to lie near the boundary between the region 1 and region 2 FACs, while a pre‐midnight sector population is found to occur poleward of the FAC boundary on region 1 upward FACs. It is also shown that the latitude of the GMDs expands with the FAC boundary and their occurrence peaks around 77° magnetic latitude.more » « less
-
Key Points These indices are not totally interchangeable, consideration should be given to index choice in model validation or cross‐study comparison Hourly averaged SMR and SYM‐H return levels track Dst for return periods below 10 years. Above that they exceed Dst; at 100 years by >10% One minute cadence SMR and SYM‐H 5, 10, 50, and 100 year return levels exceed that of Dst by about 10%, 12%, 20%, and 25% respectivelymore » « less
-
The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.more » « less
An official website of the United States government
